On Structural and Graph Theoretic Properties of Higher Order Delaunay Graphs

نویسندگان

  • Manuel Abellanas
  • Prosenjit Bose
  • Jesús García-López
  • Ferran Hurtado
  • Carlos M. Nicolás
  • Pedro Ramos
چکیده

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ORDER GRAPHS OF GROUPS

Let $G$ be a group. The order graph of $G$ is the (undirected)graph $Gamma(G)$,those whose vertices are non-trivial subgroups of $G$ and two distinctvertices $H$ and $K$ are adjacent if and only if either$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate theinterplay between the group-theoretic properties of $G$ and thegraph-theoretic properties of $Gamma(G)$. For a finite group$G$, we s...

متن کامل

Proximity Graphs: E, Δ, Δ, Χ and Ω

Graph-theoretic properties of certain proximity graphs defined on planar point sets are investigated. We first consider some of the most common proximity graphs of the family of the Delaunay graph, and study their number of edges, minimum and maximum degree, clique number, and chromatic number. In the second part of the paper we focus on the higher order versions of some of these graphs and giv...

متن کامل

Some properties of higher order delaunay and gabriel graphs

We consider two classes of higher order proximity graphs defined on a set of points in the plane, namely, the k-Delaunay graph and the k-Gabriel graph. We give bounds on the following combinatorial and geometric properties of these graphs: spanning ratio, diameter, chromatic number, and minimum number of layers necessary to partition the edges of the graphs so that no two edges of the same laye...

متن کامل

Discrimination of Native Folds Using Network Properties of Protein Structures

Graph theoretic properties of proteins can be used to perceive the differences between correctly folded proteins and well designed decoy sets. 3D protein structures of proteins are represented with graphs. We used two different graph representations: Delaunay tessellations of proteins and contact map graphs. Graph theoretic properties for both graph types showed high classification accuracy for...

متن کامل

Intersection graphs associated with semigroup acts

The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009